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Abstract

Three methods of probabilistic uncertainty

propagation and quantification (the method of
moments, Monte Carlo simulation, and a

nongradient simulation search method) are applied

to an aircraft analysis and conceptual design

program to demonstrate design under uncertainty.
The chosen example problems appear to have
discontinuous design spaces and thus these

examples pose difficuhies for many popular
methods of uncertainty propagation and

quantification. However, specific implementation
features of the first and third methods chosen for

use in this study enable successful propagation of
small uncertainties through the program. Input

uncertainties in two contlguration design variables
are considered. Uncertainties in aircraft weight are

computed. The effects of specifying required
levels of constraint satisfaction with specified

levels of input uncertainty are also demonstrated.

The results show, as expected, that the designs
under uncertainty are typically heavier and more
conservative than those in which no input
uncertainties exist.

Introduction

The aerospace vehicle design process is

inherently a multidisciplinary design optimization
(MDO) problem I 4z. Within recent years, such

MDO problems have received a growing amount
of attention from both the engineering and

optimization communities using both gradient-
based and nongradient optimization methods.

Indeed, a quick survey of recent conference
proceedings and of internet sources reveals
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literally hundreds of papers addressing various

aspects of just gradient-based optimization for

aerospace configurations and its components
A mission analysis module or discipline is

usually at the core of an aerospace vehicle

optimization problem. For example, the maior
contributing disciplines of an aircraft design

problem (most notably, aerodynamics, structures,
and performance) may be interacted 4 _' s. _'-._.-'2, :s,

4__2by using an aircraft mission analysis module.
Also, constraints formulated within a mission

analysis module may be used to account lot other

contributing disciplines (such as aircraft layout)
that are difficult to implement, and for features of
the vehicle (such as empennage) or the mission

(such as takeoff and landing) that are not the

primary focus of the particular design study 414_,

A particular mission analysis implementation
known as the Flight Optimization System
(FLOPS) for aircraft 43 is chosen herc as the basis

tor further study.

In many published optimization studies, the
inputs to the disciplinary analyses and to the
multidisciplinary optimization are assumed to be

precisely known for a given problem: these studies
are hencelbrth referred to as deterministic analyses

and optimizations. In the last few years interest
has grown, particularly within the structures

discipline, in solving problems tot which the
inputs are uncertain44-78: however, such
nondeterministic optimizations are relatively
uncommon in the aerodynamics and related

disciplines.
Uncertainties are a prominent aspect early in

the design process of a new aerospace vehicle, and
these uncertainties should be accounted for in a

formal way. The uncertainty in inputs tbr
nondeterministic studies may be due to accepted

approximations, unmodeled physics, a lack of
knowledge79, so about some aspect of the problem,
or errors, such as a lack of precision or

repeatability in measurement, or blunders
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attributed to the user or their processes. In these

cases, the uncertain inputs may be considered
random variables that take on some prescribed

distribution of values rather than a single precise
value. The uncertain input value distribution may
be one of numerous popular distributions

categorized by various statistical and probabilistic
resources _° _, or it may be some uncategorized.

perhaps even unknown, distribution that can only
be approximated. These studies, in which input
variables are assumed random and are drawn from

a prescribed distribution of values, are henceforth

referred to as nondeterministic analyses and
optimizations. The potential for input uncertainty,

expressed to disciplinary analyses via distributions
rather than single values, introduces a level of

uncertainty in the resulting analysis outputs and
raises the need to consider output distributions.

A wide variety of probabilistic uncertainty
propagation techniques exist x2-sS. The uncertainty

propagation techniques generally fall into one of

six categories: simulation methods, importance
sampling techniques, first-order reliability
methods, second-order reliability methods.
response surface methods, and method of moments

techniques. This paper considers the method of

moments, a Monte Carlo simulation technique, and
a nongradient simulation search method. The

Monte Carlo simulation technique is only used [br
comparison with the method of moments
approximation.

The application of probabilistic methods requires

the definition of ( I ) one or more random input
variable probability models or distribution types,

(2) one or more response models that describe the
physics, process, or rules which govern the system

behavior, and (3) one or more models that predict
the outcome of an event: these predictive models
are generally called limit states. The intent of each

of these uncertainty propagation techniques is to
evaluate a multidimensional probability integral
over a multidimensional surface known as the

limit state. However, in practice, evaluating this

multidimensional integral in closed tbrm is
problematic for several reasons: ( I ) the joint pdf is

generally not known. (2) the boundary over which
the integral is to be evaluated (the limit state) is

generally not known, and (3) even when the pdf
and limit state are known, the multidimensional

integral itself is difficult to evaluate. As a result.

various uncertainty methods, each with differing
computational features, and levels of accuracy and

efficiency, have been proposed and developed to
circumvent these difficulties.

The random variable probability models for

this study are chosen for convenience from among

man), possible distribution types; for example, the

variable probability models could be described by
normal, Iognormai, Weibull. uniform, or beta

distributions. For each distribution type, the pdf
describes the probability that a certain value of the
random variable will occur, plotted as a function

of the range of possible values that can be assigned

to the random variable. The shape of these

distributions is generally described analytically by
at least two parameters, including the mean value

(denoted herein by variables with an overbar) and

the standard deviation (o), which is a measure of
the dispersion of the random values about the

mean value. Some distributions may require more
than two parameters to be described, but the mean
value and standard deviation are sufficient for the
distributions considered herein. The standard

deviation is the product of a random variable mean

value and the more commonly chosen coefficient
of variation (c.o.v.). The reader should note that

the normal, lognormal, and Weibull distributions
are unbounded in at least one direction, whereas
the uniform and beta distributions are bounded in

both directions. In this paper, only normal

distributions are used for input variables.
Each pdf has an associated cumulative

distribution function (cdf)describing the
probability that the value of a random variable is

less than or equal to some prescribed value taken
from the total range of possible values. Two or

more random variables may be correlated
(dependent, or unrelated but changing together), or

uncorrelated (totally independent); in this paper,
only truly independent random variables with
normal distributions are considered.

A given uncertainty analysis might yield one
or more of the lollowing results: identification of a

single most probable point (mpp), or a locus of
mpp, at which a certain event might occur;

computation of the reliability index and its
gradients with respect to the mean values and
standard deviations of the random input variables

at the MPP: computation of the parameters

describing a random output pdf or cdf given one or
more known random input pdf and cdf:
approximation of the output pdf or cdf shape

without the lormal calculation of the parameters
associated with such a distribution: or the

accommodation of uncertainty in random input
variables without approximating the pdf and cdf.

The method of moments used in this paper
accommodates uncertainty in random input
variables and produces estimates for the mean

value and the standard deviation of the output

variables. These estimates are accurate only if the
resulting output distribution is normal. The Monte
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Carlosimulationmethodcanapproximatethepdf
ofanoutputfunctionforanyinputdistribution,
withoutactuallycomputingtheparametersneeded
todescribethepdfshape,butrequiresmany
functionevaluationsliaraccuracy.Incontrast,the
nongradientsimulationsearchmethod(ssm)can
efficientlyproduceveryaccuraterepresentations
ofthepdfandcdfforanydistributiontypes,as
wellasidentifyingthempp,thereliabilityindex,
andthegradientsofthereliabilityindexwith
respecttotherandominputvariablemeanvalue
andstandarddeviationsatthempp.

Anuncertaintypropagationand
quantificationdemonstrationforaone-
dimensionalinviscidaerodynamicexample
problem,usingnormaldistributionsfortwoinput
randomvariables,wasdevelopedinarecentpaper
byPutkoetal.8_'.Parameterst_rtheoutput
distributionswerecomputedbythemethodof
momentsandverifiedbyMonteCarlosimulations.
Otherworkinaerodynamicuncertainty
propagationandquantificationhassincebeen
publishedinvolvingtheextensiontotwo-
dimensionalairfoildesignunderuncertaintysvsx
andthepropagationofuncertaintythrough
aerodynamicviscousandturbulentflowsviathe
applicationofrandomfieldtheory89'9o.Thework
ofPutko_'wasalsothebasisforsimilar
uncertaintypropagationworkinathree-
dimensionalaerodynamic/structuralinteractionby
Gumbertetal.9_.ThePutkoandGumbertwork
closelyfollowedtheworkofothersfromthe
structuresdiscipline,mostnotably')29._,which
showedthatastatisticalfirst-ordersecond-moment
(FOSM)methodandautomaticdifferentiation
(AD)couldbeusedtoefficientlypropagatethe
inputuncertaintiesthroughfiniteelementanalyses
toapproximatetheoutputuncertainty•An
integratedstrategyformitigatingtheeffectof
uncertaintyinsimulation-baseddesignispresented
in'_¢:itconsistsofuncertaintyquantification,
uncertaintypropagation,androbustdesigntasksor
modules.Twoapproachesaredevelopedin'__to
propagateuncertaintythroughsequentialanalysis
codes:anextremeconditionapproachanda
statisticalapproach.Thelatterapproachcanbe
efficientlyimplementedusingtheFOSM
approximationandsensitivityderivatives(SD)as
wasdonebyPutko.

Theresponsemodelforthisdemonstrationis
theFLOPSmissionanalysiscode,whichincludes
equationstocomputetheaircraftweight,range,
cost,noisemetrics,andotherreadilyavailable
performanceconstraints.Themethodofmoments
wasimplementedintheFLOPSaircraftmission
analysisprogramforseveralclassesofstatistically

independent,normally-distributed,randominput
variablesandseveralclassesofrandomoutput

variables, noted above. However, due to concerns

about the accuracy and applicability of the method
of moments for this code, only uncertainty

propagation results for examples with two

uncertain input variables and one uncertain output
variable are shown in this paper. Different levels

of input uncertainty and required constraint
satisfaction are imposed• The effect of uncertainty

on the design point, compared with a deterministic
design, is noted. Output distributions l'rom the
deterministic code are compared with Monte Carlo

simulations. Sample results from the ssm
technique of the UNIPASS TM_ tool are also
shown.

The problem (including the FLOPS mission

analysis code, the aircraft, its mission, design
variables, objective, and constraints) was chosen
for this uncertainty demonstration because this

particular mission analysis code executes quickly,
which enables some level of validation with Monte

Carlo techniques. Furthermore. the FLOPS code
has been shown to be very amenable to

processing - by the Adifor automatic
differentiation tool _0¢>_0swhich enables very

efficient computation for thousands of derivatives.
Unfortunately, the FLOPS code also produces a

large number of failed analyses (illustrated

subsequently) when executed I_)r a series of related
cases, as might be done during Monte Carlo
simulation. The frequent failures of the analysis

code result in a design space that, to an

optimization or uncertainty propagation tool,
appears to be discontinuous. This situation is

actually a common feature of many complex
analysis codes. It is also a feature that is not well-
handled by many commercially developed tools.
But the discontinuous nature of the FLOPS design

space serves as a good example to illustrate the
benefits of a nongradient technique available in the
UNIPASS TM tool. In this paper, all work related to

and using the UNIPASS TM tool was performed by
the PredictionProbe, Inc. experts, whereas the

method of moments work was performed by the
NASA civil servant.

The use of trademarks or names of manufacturers

in this report is for accurate reporting and does not
constitute an official endorsement, either

expressed or implied, of such products or
manufacturers by the National Aeronautics and

Space Administration•

3
American Institute of Aeronautics and Astornautics



Approach and Methods

The FLOPS Mission Analysis Code
The FLOPS code 43 is a multidisciplinary

system of computer programs lbr conceptual and

preliminary design and evaluation of advanced
aircraft concepts. It consists of nine primary

modules: weights, aerodynamics, engine cycle
analysis, propulsion data scaling and interpolation,

mission performance, takeoff and landing, noise
footprint, cost analysis, and program control.

The FLOPS code may be used to analyze a

point design, to parametrically vary certain design
variables, or to optimize a configuration with

respect to numerous design variables using
nonlinear programming techniques. A variety of
configuration, mission performance, noise

abatement, and engine design variables and a

composite objective function (including the
minimum gross weight, minimum fuel burned,
maximum range, minimum cost, and/or minimum

NO_ emissions) are provided to allow for
simultaneous optimization of the aircraft

configuration, engine cycle, and size.
Two example cases, distributed with the

FLOPS code, will be used for the uncertainty
propagation demonstrations in this paper. The first

is a subsonic aircraft transport design case. The
second is a supersonic aircraft transport design case.

The ADIFOR Automatic Differentiation Tool

The ADIFOR t_l°_ software package is a
tool for the AD of standard FORTRAN 77

programs. Given a FORTRAN 77 source code

and user-specified dependent and independent
variables, Adifor will formulate exact derivatives

(via repeated and systematic application of the

chain rule of calculus)and generate new
FORTRAN 77 code. The new code includes

original function evaluation, augmented with code

that computes the partial derivatives (gradient) of
the specified dependent variables with respect to

the specified independent variables.
The ADIFOR 2.0 software package 1°2

provides a production-quality AD environment

that can compute derivatives by the forward
(direct) mode of AD. In the forward mode of AD,

the gradient code execution time and memory are

usually proportional to the number of independent
variables: this technology is best suited to
problems in which the number of dependent

variables is greater than the number of
independent variables.

The ADIFOR _..oflware package "

includes both forward and reverse (adioint) modes
of AD for firs! derivatives, and three forward

mode options tbr computing second derivatives. In
the reverse mode of AD, the gradient code

execution time and memory are usually
proportional to the number of dependent variables;

adjoint technology is best suited to problems in
which the number of independent variables is

greater than the number of dependent variables.
Previous studies with the FLOPS code 42

indicate that this program requires only a few
minor changes to correct nonstandard FORTRAN

77 coding to enable ADIFOR 2.0 processing of the

code to compute first derivatives. The resulting
gradient code was also found to be exceptionally

efficient in computing thousands of first
derivatives via the forward mode of

differentiation: it was almost as quick as the
original code execution. Both ADIFOR 2.0 and

ADIFOR 3.0 were applied to the FLOPS code

during the course of this study; in fact. several

"bugs" in the ADIFOR 3.0 package and in the
FLOPS code were identified and corrected as a

result of this work. However. only results using
ADIFOR 2.0 arc shown in this paper.

ADIFOR Application to FLOPS
The independent variables for differentiation

were selected from among the possible
configuration, mission performance, and noise

abatcment design variables input to FLOPS. The
independent variables lor differentiation also
included representative elements in the

aerodynamic and propulsion data provided to the

code from external sources. The dependent
variables were selected from numerous outputs
from the FLOPS analysis, including the composite

design objective, the takeoff gross weight, the
vehicle life cycle cost per unit, a noise metric, an

emissions metric, and seven typical constraints
from a menu of nineteen thai could be activated lot

the problem.

Since the FLOPS analysis is embedded

within the optimization, extra care was taken to
ensure that correct derivatives were obtained for

the analysis portion of the code during both

analysis and optimization modes of the code
execution. This entails allowing for differentiation

with respect to the input design variable values

(used for analysis mode, and as the starting point
for optimizationl and with respect to the local
design variable values used in the analysis module

when embedded within the optimization mode. It
also required special handling of the derivative

activation ("buddy variable") sites within the code,
the derivative seeding to an identity matrix, and
the zeroing of certain iterated variables to ensure

that derivative objects were not contaminated
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duringanalysisN withinformationfrontanalysis
N-1.It isexpectedthatanyanalysisembedded
withinanoptimizationwill requiresimilar
techniquestoensureproperderivativeevaluation.

Thecomputedderivativeswereonlyusedto
providegradientsneededfortheuncertainty
augmentation+describedsubsequently.ADIFOR
couldalsobeusedtoprovidethederivatives
neededforthegradient-basedoptimizationwithin
FLOPS:however,thatwasnotdonehere.Higher
orderderivativescouldalsobeobtainedvia
ADIFORdifferentiationtoenabletheformulation
ofhigherorderuncertaintycorrections(more
accuracy)andhighermomentapproximations
(moreinformationabouttheoutputdistributions).

The UNIPASS TM Software

The UNIPASS TM software, developed by

PredictionProbe, Inc., is a general-purpose Unified
Probabilistic Assessment Software System that

performs complex probabilistic analyses. The
UNIPASS TM software can be utilized

independently as a stand-alone software engine,
and/or integrated with deterministic software tools.
UNIPASS TM provides the basis for modeling

uncertainties, constructing probabilistie predictive

models, computing probabilities, identifying most

likely outcomes, providing sensitivity data,
identifying key drivers, analyzing risk. and
performing sensitivity analysis: deterministic
software tools may be integrated to provide the

computational framework for constructing

complex deterministic process models. The latest
version, UNIPASS TM 4.2, offers an advanced

graphical Windows environment. 2-D and 3-D

graphic functions, four problem types (component+
serial, parallel, and general), three analysis types
(probability, inverse probability, and cdt7pdf
analysis), six categories of probabilistic methods+

thirty-seven probability distribution types that can
be used to define any type of random variable, four

classes of random variables, three ways to

interlace with any commercial and/or in-house
sol)ware tools, eleven gradient-based mpp
identification methods, and one nongradient
simulation-based search method (SSM) that finds

the mpp for discontinuous, nondifferentiable limit
state functions. In general, the mpp represents the

most likely values of the random variables at
which the critical or significant condition of the

user-defined event will occur. In engineering, a
critical condition may be an undesirable event

such as component failure or instability, or a
desirable event such as extended component life or

mission success. Some software products use only

a gradient-based algorithm to identify an mpp.
However. those algorithms arc limited to
continuous and difl'erentiable variables, and cannot

handle the more common engineering tasks, such

as the FLOPS examples studied herein, which
involve discontinuous limit state functions.

Uncertainty Propagation

Method of Moments

Uncertainty propagation is accomplished by

using various orders of approximations to the
various statistical moments: this is a logical

naming convention for the uncertainty propagation
technique results from a given choice of the order

of approximation and the statistical moment to be
used. Only the FOSM approximation is used for

results in this paper.

In this study, the effects of uncertainty in two

input aircraft design variables are considered for
the purposes of illustrating uncertainty propagation
through the FLOPS code and design under

uncertainty. For the present demonstration (and
following the derivation in _ _.d_';), these input
variables are assumed statistically independent,

random, and normally distributed about a mean

value. These assumptions simplify the

implementation and help quantify the input
uncertainties. The assumption of the variables

being statistically independent is not required:
correlation between the variables can be easily
accounted for within the tormulation at the cost of

more computational work. For non-normal input
distributions, the method of moments corrections

are only approximately correct. In this case, the
increase in accuracy, gained from considering
additional terms in the Taylor series expansion.

could very well be offset by the approximation
error due to the non-normal nature of the input
variable.

Given a vector B ={b, ..... b,} with n

independent input random variables, b (for i

=l.n), mean values B: {b, ..... b,, }. standard

dcviations at, = {Gb, ..... Oh, ' }, and random output

function F, first-order (F()) and second-order (SO)

Taylor series approximations to the function arc
given in generic form by

FO:

F(B):F(B)+,_._-_-_,,
(1)
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SO:

Z a-f
2! ,:, _,3_;ah, _ '

where the first and second derivatives are

evaluated at the mean values, b, and B.

One must then obtain the expected values [br
the mean (first-moment) and variance (second-

moment) of the output function, F, which depend

on the derivatives of Fwith respect to the uncertain
input variables and input variances, cb-'. The

expected values of a random function are obtained

from the integration of the product of the function
itself and the imposed pdf. For normally

distributed input values, the pdf is symmetric
about the mean value. Thus, the expected value of

an odd function with a normal input distribution

involves the integration of the product of an even
and odd function, which is zero. Likewise, the

expected value of an even function involves the

integration of the product of two even functions,
which is nonzero. The mean value of the output

function F and standard deviation _v • are

approximated (as ins(' ) as

FO:

(aF 1

(2)

(3)

S():

-F = F _ ! __l z_ _l, z I,,

'_ / _F I .... { O'-F (4)/
_, = = [

where the first and second derivatives are again

evaluated at the mean values, b, andB. Note in

Eq. (4) that the second-order mean output F is not

at the mean value of inputb : a shift in the mean

value of the uncertain output function occurs due

to the specified input uncertainty, i.e.._ ¢ F(B).

Deterministic Optimization

For simplicity, a demonstration of
deterministic optimization is derived from two

particular sample cases distributed with the

FLOPS code. The first example uses the inputs lbr
the FLOPS five-design variable subsonic transport

design (xfp2.in). The input file is modified to
allow only the variables THRUST (the maximum

rated thrust per engine, in pounds lorce), and SW
(the wing reference area, in square feet), to be

active design variables; upper and lower bounds
have also been specified for these design variables.

The optimization objective is specified to be the
aircraft gross takeoff weight. The seven possible

aircraft perlormance constraints, normally
activated with this sample problem, are used.

These include the aircraft required range (which is

held fixed for this problem), the approach speed,
the takeoff and landing distances, the approximate
missed-approach and second-segment climb

gradients, and the excess fuel. The Broyden-

Fletcher-Goidfarb-Shano (BFGS) optimization
method (the default among several optimization
methods available within the FLOPS code) was

used to solve this problem. In the FLOPS
implementation of this optimization method, a

composite objective function is minimized. The
composite objective function is composed of the

true objective augmented with a highly nonlinear
penalty function that grows rapidly as the design

variables approach their upper or lower bounds,
and as constraints become active.

Robust Optimization

The form of the uncertain objective follows
from the development in _6, with an adaptation to
the current optimization problem. The FOSM

expression tbr the current uncertain objective is

(5)

where

, _+( objo.cr,,t,, - L I hb f,
t=l k tJ /

(6)

and where the o'_, are the known standard

deviations for each of the random input variables.

as noted previously. The adaptation of the
uncertain objective provides a composite objective

function, similar in magnitude and functionality to
the original objective function of the FLOPS code
but augmented with uncertainty effects. Since the

uncertainty correction to the objective function is

small compared with the uncertainty correction to

6
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the constraints+ it may be possible to neglect the

objective uncertainty correction altogether; this is
proposed as the subject of further research.

Again+ following the development m , the
forms of uncertain constraints are written as:

g,, = g,,, +kay,,, m = 1,7 f7)

where

I',._'(Og,,, G
.,,+ _ Z -- h

m = 1,7 (8)

and where k is the required probabilistic constraint

satisfaction in units of input variable standard
deviations. For this example, values of k ranging

from zero (constraint satisfied with 50cA,

probability for a normal distribution) to three
(constraint satisfied with 99.9cA probability for a
normal distribution) were considered. Values of

the random variable o'_, were each computed as

the product of a c.o.v, and the random input
variable mean value, both input to FLOPS

program, for each variable. The c.o.v, values were
chosen to be the same for all the random input

variables in a given problem.
It is surprising that tiny numerical differences

between the deterministic and robust solutions

teffects of uncertainty) could be observed for

extremely small values of the input c.o.v. (i.e., for
c.o.v, of order IO2°). These solutions are

"deterministic" from a practical point of view, but
exhibit numerical behavior that can only be

attributed to the imposed uncertainty corrections.
However, for "small enough" values of c.o.v. (i.e.,
for c.o.v, of order 10 au), no differences from the

purely deterministic solution could be discerned,

as expected.
The method of moments formulation

described above requires derivatives to be
evaluated. If these derivatives were to be

computed by finite difference approximations, it
would be necessary to find two or more successful

function evaluations near the point of interest for

evaluating the derivative. For the example
problems chosen, this requirement was sometimes
difficult to meet because of frequent failures of the

analysis module, which led to discontinuous
objective and limit stale functions, although the

design physical space of interest was locally (or
piecewise) continuous. The discontinuous nature

of the design space with the FLOPS code also
caused problems for the UNIPASS TM tool,

necessitating the use of the nongradient SSM.
However, the use of automatic differentiation to

compute the derivatives made the method of
moments formulation more successful than might

be expected for examples with numerical
discontinuities because the derivatives were

evaluated analytically at each point of interest via
the chain rule. Thus, finding successful

neighboring points to a successful analysis point
was not an issue with the current method of

moments uncertainty formulation.
Two restrictions that are more serious do

arise from using the method of moments: ( 1 ) the
formulation is only valid for normal input and

output distributions, and (2) the function gradients
are evaluated at the mean value point, rather than

at the mpp. Thus, the method of moments

computations are generally not very accurate away
from the mean value of the random function and

are even less accurate for non-normal

distributions. In particular, the method of
moments is expected to be significantly inaccurate

lot predicting very low probability of failure

points (e.g., in the tail region of a normal
distribution) and for highly skewed output
distributions. The use of AD to evaluate gradients

offers two possibilities to address this issue: ( I ) if

higher order derivatives are available, better

approximations can be achieved for low
probability failure points by constructing Taylor

series approximations that better represent those
evaluation points far from the mean value, and (2)
if the mpp can be identified by other means, the
functional derivatives can be obtained at the mpp
via AD without the need to find successful points

neighboring the mpp.

Simulation Search Method (SSM} of
UNIPASS TM

The FLOPS optimization routines, like many

other optimization algorithms, may not produce
acceptable results for a given set of input data, and
theretbre will result in a highly discontinuous

response surface. When probabilistic analysis is

perlbrmed, such discontinuity in the response
surface cannot be handled with standard first- and

second-order reliability methods or other

approximate and more efficient probabilistic
techniques. Furthermore, since the desired level of
reliability is usually greater than 0.99999, the

application of Monte Carlo simulation becomes
impractical. Therefore. an efficient first- and
second-order reliability method that could solve
such nondifferentiable discontinuous problems,

7
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such as the one provided by UNIPASS TM,

becomes highly desirable.
The UNIPASS TM nongradient SSM was

applied to the FLOPS code lor the sample problem

based on the subsonic transport design problem,
again modilicd to allow only the THRUST and

SW to be active design variables. Application of
the SSM also allowed for: (I) determination of the

aircraft weight PDF tor a probability range from
0.01 to 0.99, (2) determination of the aircraft

weight CFD and the maximum aircraft weight due
to input uncertainties to a probability of 0.9999,

(3) mpp identification, and (4) computation of the

gradients of thc reliability index.

Results

Method of Moments

Starting from the subsonic transport

optimization problem ("xflp2.in") test case

distributed with the FLOPS code, the input file
was first modified so that only THRUST
(maximum rated thrust per engine) and SW (the

reference wing area) in Namelist $CONFIN were
active design variables. These variables are the

primary aircraft sizing variables. The modified
input file was then used lor both deterministic and

robust optimizations. The robust optimizations had
various levels of input uncertainty for the active

design variables and various levels of required
constraint satisfaction, both specified in auxiliary

input file to FLOPS. For the first example case,
the specified uncertainty corresponds to a c.o.v, of
5(/_ lot each of the two input variables. Since the

mean value of THRUST lbr this problem is 47,500
Ib and the mean value of SW for this problem is

2272 ft 2, onc standard deviation (_) is 2375 lb, and

113.6 ft 2 lor the two variables, respectively.

Figure 1 is a simplified aircraft sizing contour
("thumbprint") plot illustrating the design space
near the deterministic and robust optimizations for

this case. The x-axis of the figure shows a
normalized value of the maximum rated thrust per

engine, ranging from 20,000 to 60,000 pounds
force: the y-axis of the figure shows the

normalized value of the reference wing area,
ranging from 1000 to 5000 It=.

The figure is simplified from typical
thumbprint plot in that only the active constraint

violation boundaries for the specified problem are
shown, rather than multiple contours representing
various values of the limit state function. The

constraint violation boundaries were interpolated
from a parametric variation of the two variables

with nine equally spaced points in each direction.
Also shown in figure I are the locations of final

design points Ior the deterministic and three mean
robust optimizations. In this example, both

FLOPS constraint 2 (the upper limit on approach
speed) and FLOPS constraint 5 (the lower limit on

missed approach climb gradient) were active for

the deterministic optimization. As expected, the
deterministic design point is found at the
intersection of the two active constraints. The

optimization path was almost entirety within the

feasible region in the figure.

The three robust optimization points (labeled
k = I, k = 2, and k = 3 in the figure) correspond to

imposed constraint satisfaction margins of I, 2,
and 3 standard deviations about the mean value of

the deterministic solution. The offset in the robus!

design points from the constraint violation

boundaries is proportional to both the imposed
input uncertainty and the gradient of the constraint

with respect to the uncertain design variables.

Figure 1 also shows that the robust optimization
with k = I enforces a greater margin of
satisfaction for both constraints than does the

deterministic optimization. Similarly, each of the
robust solutions enlbrces greater constraint

satisfaction, with increasing values of k than either
the deterministic solution or the robust

optimizations with smaller values of k. For the

deterministic optimization, the constraint

satisfaction with respect to single constraint
violation is only 50_ probability lot an output

normal distribution: lor k = I, this probability
increases to about 849/: for k = 2, the probability

is about 97.7%: and lbr k = 3, the probability rises
to about 99.9%.

Simultaneously (not shown in the plots), the

aircraft weight increases with increased constraint
satisfaction from the deterministic value of

213110.5 lb to a valuc of 217052.6 lb |or k = 1, to
a value of 220222.0 Ib tbr k = 2, and to a value of

223443.1 lb. for k = 3. The weight for k = 3 is
about 5% higher than the deterministic solution.

Similar results to those shown in figure I arc
presented in figure 2, this time for a c.o.v, of 10c/_.
The relative ofl_et from the constrain! violation

boundaries grows in proportion to the increased
input uncertainty imposed on this problem, relative

to the previous example. Simultaneously (not
shown in the plots), the aircraft weight increases
with increased constraint satisfaction. The

deterministic solution has a weight of 213110.5 Ib:

k = I has a weight of 220218.9 lb: k = 2 has a
weight of 227079.4 lb; and k = 3 has a weight of
234092.7 ib (about 10% greater than the

deterministic weight).
Generally, similar results to those shown in

figures I and 2 are shown lbr the supersonic

8
American Institute of Aeronautics and Astornautics



transport optimization problem ("xflp3.in') test

case in figures 3 and 4 with violation boundaries
constraints 2 and 3 (takeoff distance). In this case,

the design under the uncertainty problem was
much more difficult to solve in a robust design

modc: the design path was almost entirely in the

infeasible region of the figure, meaning the
uncertainty correction contributed substantially to

the nonlinear penalty function. The example
exhibited much greater sensitivity to smaller levels

of input uncertainty and to smaller levels of
variation in local gradients calculated tor

objectives and constraints at various points in the

design evolution. The deterministic design point
appears to be caught in a corner of constraint 2,
rather than at the intersection of the two sometimes

active constraints. In many cases, the optimization

path was significantly different under small levels

of input uncertainty than for the deterministic
optimization. Figure 3 shows the results for only
0.05e_ variation of the THRUST and SW. The

same general behavior is observed as in figures 1
and 2. but figure 3 shows much greater levels of

sensitivity to the level of input uncertainty. Figure
4 shows the results lot 0.08% variation in the same

two input variables.
Results from a 5000 sample Monte Carlo

simulation, centered at the deterministic design

point of figures 3 and 4 and based OI11°6, are shown

in figure 5. Of the 5000 requested FLOPS
analyses, 447 (8.94%) failed to produce an answer.
Over the course of preparing this paper, FLOPS

analysis failure rates ranging from 8.2% to 889/
were observed during various NASA civil servant

attempts to perform Monte Carlo simulations,

depending on the various parameters chosen to
guide the Monte Carlo simulation. The average
analysis failure rate from seven Monte Carlo

attempts was 28%, which agrees closely with the
FLOPS analysis failure rate observed by the

experts from PredictionProbe during the course of
their studies. The FLOPS gross weight response
(labeled Prob in the figure) was converted to a

standard normal space for comparison with a
standard normal distribution (labeled Norm in the

figure). The figure shows that the FLOPS output
distribution departs significantly from that of a
normal distribution, suggesting a highly nonlinear

response from the FLOPS code for this supersonic
transport design case. The mean value shifts

significantly from that of a standard normal

response and even a bimodal response pattern is
observed, indicating that the lower aircraft weights
could be found "just around the corner" from the

deterministic optimization point. This result might
be expected after examining the location of the

deterministic design point in figures 3 and 4 at a

corner of a single constraint in the design space.

Despite the obviously non-normal output
behavior of the FLOPS code lk_r this example, as

depicted in figure 5, on-going research suggests
that the failure rates with respect to constraint

violation predicted by the method of moments are
similar in magnitude to those predicted by Monte
Carlo simulations centered about the various

design points depicted in figures 1-4. More
research into the accuracy of the method of

moments, perhaps utilizing AD to compute higher
order approximations to higher moments, might be
warranted in this case.

UNIPASS TM Example

A pdffcdf analysis was performed for the
subsonic aircraft design problem using the SSM to
determine the aircraft weight distribution for the

probability range from 0.01 to 0.99 (the middle
98% of the weight distribution). The SSM allows

tot identification of the mpp and calculation of the

reliability and sensitivity data for nondifferentiable
discontinuous problems. Assuming THRUST and

SW to be normally distributed with mean values of
34405. I1734 and 2054.19523, respectively.

figures 6 and 7 depict the pdf and cdf of the
aircraft weight for the deterministic optimization
shown in figures 1 and 2, ff)r c.o.v. = 5% and 10
%, respectively as determined by the UNIPASS TM

tool. Note that the output distributions are not
normal distributions, which implies that the results

shown in figures I and 2 for the method of
moments uncertainty propagation may also be

suspected of inaccuracy.
The SSM is much more accurate than a

comparable Monte Carlo simulation, for a given

number of analyses, at predicting the output
distribution cdffpdf. For example, more than
40,000 successful runs would be needed to

produce an accurate cdf point for a probability
level of 0.99 with c.o.v. = 0.05c_. Furthermore,

while a 0.99 probability level may be adequate to
predict the potential overweight, it is far from

adequate for reliability estimates or risk
calculations, which often require success

probability levels of 0.99999+. In such cases,
40,000,000+ successful runs are needed to predict

probabilities with c.o.v. = 0.05%, which is
impractical for real world applications.
Alternatively, an SSM approach may be used to

develop the cdffpdf of the aircraft weight
significantly fewer runs. In this case, the number
of the maximum number of runs is determined by

the SSM based on a predefined tolerance level.
Using SSM, 457 executions of FLOPS produced
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263successfulruns(42.4%failurerate),which
wereusedtoidentifyanmpp,toproducethecdf
plots(figures6and7),andtogeneratesensitivity
measures(figures8and9).Thetotalnumberof
successfulrunsrequiredtoproduceaccurate
valuesforprobabilityvaluesof0.99999+isnot
expectedtoincreasesignificantly.

SamplesensitivitydatafromUNIPASSTM

showing the sensitivity of the reliability index with
respect to the mean values of the input random

variable, evaluated at the mpp and scaled by the
random variable mean values, are depicted in

figures 8 and 9, for c.o.v. = 5% and 10%,
respectively. Significantly, these figures indicate

that there are three distinct regions in the design
space: CI ) negative sensitivities for both SW and

THRUST, (2) positive sensitivity for THRUST
and negative sensitivity for SW, and (3) positive
sensitivities for both variables. Additional studies

are needed to understand the implications and
limitations of this sensitivity inlormation for the

given problem before drawing any conclusions.
For example, recall that these two variables were
deemed to be uncorrelated (without discussion),

when, in fact, greater SW would logically require
greater THRUST. Subsequent studies should fully

consider any possible statistical correlation
between the uncertain variables. It should also be

emphasized that this probabilistic study was
performed using only two uncertain variables,

whereas the potential number of deterministic and
uncertain variables could be significantly more for

many cases of interest.

Conclusions

The FLOPS aircraft mission analysis and

optimization code was successfully augmented
with approximations to the first-order second-
moment probabilistic uncertainty propagation

terms for the objective and potentially active
constraints. Two input variables that substantially

contribute to aircraft shape and sizing were
assumed to be uncertain in two separate test cases:
a subsonic transport design and a supersonic

transport design. These variables were assumed to

bc statistically independent and to take on random.
normally distributed input values about a mean

value. Gradients required for uncertainty
augmentation were obtained by using automatic
differentiation applied to the code.

Results from two deterministic optimizations
and from several designs under uncertainty, with

various amounts of imposed uncertainty for two
input design variables, were presented. For the

subsonic transport design case, input uncertainties
of 5_ and 10c/_ of the mean value of the uncertain

input variables were considered. Results were also

shown for increasing amounts of required

constraint satisfaction. As expected, the weight of
the aircraft increases in all cases from its

deterministic value. The amount of weight
increase was proportional to both increasing

amounts of uncertainty and to increasing amounts
of required constraint satisfaction specified in the

optimization problem.

For the subsonic transport design problem,
the output probability density function

distributions computed by a commercially
distributed uncertainty propagation tool arc non-

normal in shape, indicating a nonlinear response
from the code for which the method of moments is

known to be inaccurate. For the supersonic
transport design case, uncertainties of only 0.08_

of the mean value of the uncertain input variable

were considered. They produced levels of output
uncertainty similar to those for the subsonic

transport example with 10c_: input uncertainty.
The weight distribution also departed significantly
from that of a standard normal distribution,

making the application of the method of moments
highly questionable for this case. Although the

theoretical accuracy of the uncertainty propagation
results obtained with the method of moments is

questionable for the cases shown, in practice, the
method may still yield reasonable approximations
for the constraint failure rate. Further research into

the accuracy of the method of moments
approximation is recommended for both cases.

The FLOPS code was also successfully
integrated and analyzed with a commercially

distributed probabilistic assessment software

system to identify aircraft weight probability
density function, cumulative density function, and
maximum weight to a high probability level, and

the most probable point (mpp) of failure with
respect to the imposed design constraints. Since
the analysis module under consideration exhibited

significant numerically discontinuous behavior,
the mpp was lbund using a nongradicnt simulation

search method. Once the mpp was known, an

inverse probability technique was applied to
compute sensitivities of the reliability index with

respect to the mean value of two random input
variables. The probability density function and
cumulative density function of the random output

variable were also computed.
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